EPFL

WHAT TO ALIGN IN MULTIMODAL CONTRASTIVE LEARNING?

le cnam

B. Dufumier^{1, 2,*}, J. Castillo Navarro^{1, 3,*}, D. Tuia¹, J-P. Thiran¹

¹ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE (EPFL), SWITZERLAND ² NeuroSpin, CEA Saclay - Université Paris-Saclay, France ³ Conservatoire National des Arts et Métiers, CEDRIC Laboratory, France * DENOTES EQUAL CONTRIBUTIONS

MOTIVATION

► Humans experience the world through multisensory integration, blending information across multiple modalities.

- ► Multimodal representation learning preserves:
- → modality-specific information (<u>U</u>niqueness)
- \rightarrow shared semantics (**R**edundancy)
- → cross-modal synergy (<u>S</u>ynergy)
- ► How to model these quantities?
 - → Partial information decomposition (PID)

$$I(X;Y) = I(X_1, X_2; Y)$$

= $R + U_1 + U_2 + S$

Can we capture multimodal interactions in a self-supervised way?

BEYOND CROSS-MODAL ALIGNMENT

- ► CLIP-like models align representations from two modalities
- ► It only learns redundant information, neglecting other interactions
- CoMM encodes multiple modalities to a single multimodal space
- ▶ It aligns multimodal repintegrating X_2 resentations, redundant, unique and synergistic interactions.

3. CoMM

CoMM's training

Given a set of minimal label preserving multimodal augmentations \mathcal{T}^{\star}

- ▶ Draw $t', t'' \in \mathcal{T}^*$ to obtain X' and X''
- \blacktriangleright Get projections X_1 and X_2
- ► Get multimodal embeddings Z', Z'' and Z_1, Z_2
- ightharpoonup Contrastive loss: $\mathcal{L}_{\text{CoMM}}$

Loss function

- $\blacktriangleright \mathcal{L} = -\hat{I}_{NCE}(Z', Z'')$
- $\mathcal{L}_i = -\frac{1}{2} \left(\hat{I}_{\text{NCE}}(Z_i, Z') + \hat{I}_{\text{NCE}}(Z_i, Z'') \right)$

$\mathcal{L}_{\text{CoMM}} = \mathcal{L} + \sum_{i=1}^{n} \mathcal{L}_i$

Theoretical guarantees

Lemma 2. By optimizing f_{θ} to maximize $I(Z_{\theta}; Z'_{\theta})$, and if we assume an expressive enough network f_{θ} , we have at optimum: $I(Z_{\theta^{\star}}, Z'_{\theta^{\star}}) = I(X, X')$

Lemma 3. Let f_{θ^*} be optimal, i.e. f_{θ^*} maximizes $I(Z_{\theta}, Z'_{\theta})$. Then, we have the equality $I(Z'_{\theta^*};Y)=I(X';Y)$. If we consider the special case $\mathcal{T}=\{t_i\}$ such that $X'=t_i(X)=X_i$ and $Z'_{\theta^*} = f_{\theta^*}(X_i) = Z_i$ for $i \in \{1, 2\}$, then it follows: $I(Z_i; Y) = I(X_i; Y) = R + U_i$

4. CONTROLLED EXPERIMENTS: BIMODAL TRIFEATURES

- → 2 streams of trifeature samples
- \rightarrow 3 features: color, shape and texture, 10 of each
- ► **Uniqueness.** Given a pair with **different textures**: \rightarrow **U**_i: predict the *i*-th texture
- ► **Redundancy.** Given a pair with same shape:
- → **R**: predict the shape of inputs
- **Synergy.** Given a **unique matching** (texture, color) & a pair of samples:

∼→ CoMM is the only model to learn synergy!

Ablation study on the loss function

- learns redundancy and uniqueness, but fails at synergy
- \triangleright \mathcal{L} learns all the terms, but slowly
- \triangleright \mathcal{L}_{CoMM} is the perfect compromise

RESULTS WITH 2 MODALITIES

MM-IMDb

- → Modalities: Images & Text (movie poster + description)
- → Task: Multi-label classification (movie genre)
- **CoMM** beats modern vision-language models!

Model	Mod.	w-f1	m-f1
	V	51.5	40.8
CLIP	L	51.0	43.0
	V+L	58.9	50.9
BLIP-2	V+L	57.4	49.9
CoMM (CLIP init)	V+L	61.4	54.6
CoMM (CLIP init) CoMM (BLIP-2 init)	V+L V+L	$\frac{61.4}{64.7}$	54.6 58.4
,			
CoMM (BLIP-2 init)	V+L	64.7	58.4

Rows in color are supervised. †: supervised fine-tuning.

LLaVA-NeXT V+L 64.2 56.5

MultiBench

- → Diverse data modalities: tabular, time-series, text, images, etc.
- Complex multimodal scenarios: varying degrees of shared and unique relevant information.

Model	Regression	Classification			
	$V\&T$ $EE\downarrow$	<i>MIMIC</i> ↑	$MOSI \uparrow$	<i>UR-FUNNY</i> ↑	$MUsTARD \uparrow$
Cross	33.0	66.7	47.8	50.1	53.5
Cross+Self	7.5	65.4	49.0	59.9	53.9
FactorCL	10.8	67.3	51.2	60.5	55.8
CoMM	4.5	66.4	67.5	63.1	63.9
SupCon	-	67.4	47.2	50.1	52.7
FactorCL-SUP	1.7	76.8	69.1	63.5	69.9
CoMM (fine-tuned)	1.3	68.1	74.9	65.9	70.4

∼→ CoMM is a versatile and efficient multimodal model

RESULTS WITH 3 MODALITIES

► CoMM can be trained with more than 2 modalities!

#Mod.	V&T CP	UR-FUNNY
2	84.4	50.1
2	86.8	59.9
2	88.1	<u>63.1</u>
3	94.1	59.2
3	94.2	64.6
	2 2 2 2	2 86.8 2 <u>88.1</u> 3 94.1

Consistent improvement with a third modality.

PERSPECTIVES

Visit our website!

➤ PID theory is limited to 2 modalities → Extension using O-Information

- Interpretability of CoMM → Disentangle multimodal interactions
- Data augmentation computational cost
- → Investigate knowledge distillation